Фредерик Сенгер | Нобелевская премия по химии  1958 | Биография
Нобелевская премия по химии  1958

Фредерик Сенгер
(1918-2013)
За установление структур белков, особенно инсулина
Биография Фотогалерея





Английский биохимик Фредерик Сенгер (Сангер) родился в Рендкомбе (графство Глостершир), в обеспеченной семье квакеров. Его мать, в девичестве Сесили Крусдом, была дочерью преуспевающего текстильного магната. Отец же (кстати, в его честь и был назван С.) работал врачом. С 1932 по 1936 г. будущий ученый обучался в Брайанстонской школе в Блэндфорде (графство Дорсетшир), а в 1936 г. поступил в колледж св. Иоанна Кембриджского университета. Первоначально С. планировал пойти по стопам отца и заняться медициной, но его заинтересовала биохимия. «Мне казалось, – писал он много лет спустя, – что это был путь к действительному пониманию живой материи и к разработке более научных основ для решения многих проблем, стоящих перед медициной».

В 1939 г. в Кембриджском университете С. получил степень бакалавра естественных наук. В сентябре того же года разразилась вторая мировая война, но С., как квакер, был освобожден от воинской службы и оставлен в Кембридже в аспирантуре. Получив в 1943 г. докторскую степень, он вошел в исследовательскую группу, возглавляемую Э.Ч. Чибналлом, который как раз перед этим сменил Фредерика Гоуленда Хопкинса в должности профессора биохимии Кембриджского университета. В то время Чибналл занимался изучением химии белков.

В 1902 г. Эмиль Фишер предположил, что белки состоят из аминокислот, связанных между собой пептидными связями. К началу 40-х гг. гипотеза Фишера была широко, хотя и не повсеместно признана. Когда более чем две аминокислоты связаны вместе, они образуют полипептидную цепь. Поскольку аминокислота может образовывать не более двух пептидных связей, Фишер предсказал, что белки должны состоять из линейных цепей аминокислот со свободной карбоксильной группой (состоящей из углерода, кислорода и водорода) – на другом. Чибналл предложил С. установить конечную группировку пептидной цепи химическим путем. Если бы это удалось сделать, то было бы установлено, что белки действительно состоят из линейных цепей аминокислот. Кроме того, это указывало бы и на то, входит ли в один белок более чем один вид пептидной цепи.

В 1945 г. С. сообщил, что в мягких щелочных условиях определенный реагент (динитрофенол) может присоединяться к атому азота аминокислоты благодаря связи более сильной, чем пептидная. Следовательно, белок может быть расщеплен на составляющие его аминокислоты с разрушением пептидных связей, а аминокислоты можно установить с помощью хроматографии. Метод хроматографии, как раз перед этим усовершенствованный Арчером Мартином и Ричардом Сингом, позволяет разделять вещества на компоненты, исходя из характерной скорости, с которой они поглощаются специальным фильтром.

Значительная часть исследований, проводимых в лаборатории Чибналла, была связана с инсулином, одним из немногих белков, доступных в то время в чистом виде и в больших количествах. Первоначальное изучение С. инсулина показало, что он содержит две различные N-концевые аминокислоты. Следовательно, каждая молекула инсулина состоит их двух видов полипептидных цепей. Аминокислота цистеин содержит молекулу серы; две молекулы цистеина могут соединяться с образованием цистина, в котором имеется дисульфидный мостик либо между двумя полипептидными цепями, либо между различными участками одной цепи. В 1949 г. С. сообщил, что он открыл способ разрушения этих дисульфидных мостиков и, следовательно, метод разделения двух цепей.

С. и приехавший из Вены ученый Ганс Туппи разработали план установления последовательности чередования аминокислот в каждой полипептидной цепи инсулина. Разбив цепь на подсекции, эти двое ученых надеялись установить последовательность аминокислот в каждой подсекции и, исходя из этой информации, последовательность их чередования во всей полипептидной цепи. Несмотря на то что С. первоначально использовал кислоту, чтобы разорвать полипептидную цепь, он вскоре обнаружил, что ферменты действуют гораздо более точно. Таким образом, С. и Туппи сравнивали фрагменты цепи, полученные в результате применения различных ферментов, для понимания последовательности чередования аминокислот во всей цепи. Установить последовательность чередования для более длинной из двух инсулиновых цепей оказалось неожиданно легко, и эта работа была почти закончена к тому времени, когда Туппи в 1950 г. уехал из Кембриджа. Однако более короткая инсулиновая цепь не так легко поддавалась химическому анализу, и поэтому последовательность чередования в ней аминокислот была полностью установлена только в 1953 г. С. продолжил работу по установлению местоположения дисульфидных мостиков между двумя цепями, и в 1955 г. представил законченную структуру молекулы инсулина. Это была первая белковая молекула, так подробно изученная.

Работа С. имела важные последствия для биохимии и зарождающейся науки – молекулярной биологии. Результаты проведенных им исследований окончательно доказали, что белки состоят из аминокислот, соединенных в цепи пептидными связями. В начале XX в. многие химики полагали, что белки представляют собой смесь родственных соединений. С., однако, установил, что белок – это особое химическое вещество с уникальной структурой и что каждое место в цепи занято определенной аминокислотой. Он также доказал, что ферменты могут разрывать пептидные цепи в заранее установленных местах. Применение этого метода помогло биохимикам определить структуру многих других белков.

В 1958 г. С. была присуждена Нобелевская премия по химии «за установление структур белков, особенно инсулина». В своей Нобелевской лекции С. подчеркнул большое практическое значение проведенной им работы. «Установление структуры инсулина, безусловно, открывает путь к исследованию других белков, – сказал он. – Можно также надеяться, что изучение белков поможет выявить изменения, которые происходят в организме во время болезни, и что наши усилия могут принести человечеству большую практическую пользу».

Еще до получения Нобелевской премии С. занялся изучением генетики. Отчасти это произошло под влиянием дружбы ученого с Фрэнсисом Криком. Для С. одним из наиболее поразительных фактов, касающихся последовательности чередования отдельных групп в инсулине, было явное отсутствие какого бы то ни было принципа уникального расположения аминокислот. А ведь от этого, казалось бы, случайного порядка зависела важная физиологическая деятельность. С. не понимал, каким образом белок может соединяться именно в такой последовательности, однако было очевидно, что у этого порядка должны быть определенные истоки. В середине 50-х гг. Крик (который вместе с Джеймсом Д. Уотсоном первый описал структуру генетического вещества дезоксирибонуклеиновой кислоты, или ДНК) объяснил сделанные С. открытия, прибегнув к «гипотезе последовательности», которая заключалась в том, что информацию, определяющую последовательность аминокислот в белке, несут гены. Позднее было установлено, что сами гены представляют собой последовательность звеньев, отдельные группы которых соответствуют определенной аминокислоте.

Нуклеиновые кислоты – ДНК и рибонуклеиновая кислота (РНК) – это цепи связанных нуклеотидов. Нуклеотид состоит из молекулы сахара с фосфатным остатком и присоединенной к ним одной из четырех «основных» молекул. Нуклеотиды связаны вместе фосфатными группами и образуют полипептидные цепи. В структуре молекулы ДНК две параллельные цепи составляют конфигурацию винтовой лестницы. Пара оснований образует ступеньку этой лестницы, соединяясь между цепями особыми связями: аденин (А) с гуанином (Г), питозин (Ц) с тимином (Т). Код для аминокислот определяется последовательностью трех оснований. Процесс строительства белка начинается с того, что соответствующий участок молекулы ДНК, который включает полные указания для сбора соединения, «расстегивает молнию» для связи, соединяющей основания друг с другом. Свободные нуклеотиды (как попало плавающие в клетке) оказываются привязанными вдоль открытой для этого последовательности молекулы ДНК, образуя зеркально отображенную цепь, называемую матричной РНК (мРНК). Законченная цепь мРНК покидает ДНК (которая тогда снова «закрывает молнию») и продвигается к клеточным структурам, которые называются биросомами, где и будет собираться белок. Участки более короткой цепи формируются мРНК и затем движутся в сторону, с тем чтобы вобрать в себя соответствующие свободные нуклеотиды, которые они затем приносят обратно мРНК для включения в белковую структуру. Эти короткие цепи называются транспортными РНК (тРНК). К тому времени, когда С. приступил к изучению нуклеиновых кислот, об этих процессах мало что было известно, а о нуклеотидовых последовательностях не было известно вообще ничего.

Последовательности ДНК и РНК представляют большие трудности для анализа, чем белковые последовательности, поскольку они длиннее. Типичная белковая цепь может содержать до пятидесяти аминокислот, а типичная мРНК содержит сотни нуклеотидов. ДНК даже крошечного вируса состоит из тысяч нуклеотидов. И тем не менее последовательности нуклеиновых кислот легче поддаются раскодированию, чем белковые последовательности, из-за их фундаментального различия: в то время как каждое место в белковой цепи может быть занято любой из 20 различных аминокислот, существует только 4 «претендента» на каждое место в последовательности ДНК – нуклеотиды, сокращенно называемых А, Т, Ц и Г (по названию их оснований).

В 1958 г. Роберт У. Холлы предпринял попытку установить последовательность цепи тРНК. Несмотря на то что длина этих коротких цепей не превышает 100 нуклеотидов, эта работа из-за сложности установления последовательности затянулась до 1965 г. На С. произвела глубокое впечатление работа Холли, но он искал более действенный метод установления последовательности, доступный для применения к цепям мРНК, длина которых нередко достигает нескольких сотен нуклеотидов. В начале 60-х гг. он и его коллеги разработали такую технологию. Применив ферменты, они разорвали цепи мРНК на более мелкие цепи и проследили последовательность в каждой из них отдельно. Затем на основании заключений о взаимоотношении между фрагментами была определена последовательность во всей цепи.

Такой подход, однако, требовал массы времени и терпения, и С. решил разработать аналитический метод установления последовательности в ДНК. Он добился этого в 1973 г. Предложенная им процедура заключалась в том, что двойная цепь молекулы ДНК разбивалась на одинарные цепи (называемые стренгами), а затем полученный материал группировался в четыре образца. Каждый образец начинают восстанавливать до первоначальной последовательности двойной цепи, исходя из шаблона одинарной цепи. Однако исследователи останавливают процесс восстановления на разных нуклеотидах для каждого образца либо путем ограничения концентрации того или иного свободного нуклеотида, либо помещая в цепь определенный нуклеотид с таким химикатом, который предотвращает дальнейший синтез. В результате этого реконструированные цепи представляют собой образцы различной длины, но каждая заканчивается одинаковым нуклеотидом. Затем эти четыре образца одновременно пропускают через фильтрующий материал, называемый сверхтонким акриламидным гелем, который разделяет эти цепи в соответствии с их длиной, поскольку более короткие цепи проходят через гель быстрее. И тогда нуклеотидная последовательность первоначальной цепи ДНК может быть прочитана прямо с геля путем сравнения следов, оставленных образцами.

В то время как С. м его коллеги работали над этим методом (названным дидекоксидным методом по типу используемого при этом ограничивающего химиката), американские ученые Уолтер Гилберт и Аллан Мэксам разрабатывали другую процедуру установления нуклеотидных последовательностей. В соответствии с их методом фрагменты цепи ДНК различной длины получают, разрывая цепь на специфических основаниях. Этот подход напоминает метод, который применил С. для установления последовательностей в белковых цепях и цепях РНК. Как технология С., так и технология Гилберта стали важнейшим инструментом генной инженерии, хотя метод С. несколько более эффективен при работе с очень длинными последовательностями. Еще в 1978 г. С. и его коллеги продемонстрировали действенность дидезоксидного метода, установив последовательность 5375 оснований в цепи ДНК бактериального вируса. Это был первый случай такой подробной расшифровки цепи ДНК.

В 1980 г. С. и Гилберту была присуждена половина Нобелевской премии по химии «за вклад в установлении основных последовательностей в нуклеиновых кислотах». Другая половина премии была присуждена Полу Бергу. Эти трое ученых, сказал в своей вступительной речи от имени Шведской королевской академии наук Б.Г. Мальстрем, «сделали возможным проникновение в еще большие глубины в нашем понимании взаимосвязи между химической структурой и биохимической функцией генетического материала».

В 1983 г. С. вышел в отставку с занимаемого им поста в Медицинском научно-исследовательском совете. Скромный, склонный к уединению человек, он живет в Кембридже со своей женой Маргарет Джоан Хоув. Брак с ней был зарегистрирован в 1940 г. У супругов два сына и дочь. С. любит заниматься парусным спортом и работать в саду.

С. удостоен многочисленных наград. Среди них: медаль Кордей-Моргана и премия, присужденные ему Британским химическим обществом (1951), премия Альфреда Бензонса Фонда Альфреда Бензонса (1966), Королевская медаль Лондонского королевского общества (1969), ежегодная награда Гарднеровского фонда (1971 и 1979), памятная медаль Хэнбери Фармацевтического общества Великобритании (1976), медаль Копли Лондонского королевского общества (1977) и премия Альберта Л аскера за фундаментальные медицинские исследования (1979). С. – почетный член Американского общества биохимиков и американской Национальной академии наук, обладатель почетных степеней университетов Лестера и Страсбурга, а также Кембриджа и Оксфорда.

Именем Сенгера назван основанный фондом Wellcome Trust и Британским Советом по медицинским исследованиям институт, в число проектов которого входят «Геном человека», «Геном рака», «От генов к когниции» и др.

Фредерик Сенгер умер 20 ноября 2013 года.


Керамическая коронка
Керамический кирпич различных видов
family76.ru